Rabu, 09 Mei 2018

C. RUMUS PERBANDINGAN VEKTOR BERDIMENSI TIGA

C. RUMUS PERBANDINGAN VEKTOR BERDIMENSI TIGA
Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis.
Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu:

Catatan : Bentuk (a) dapat dinyatakan dalam kalimat : “P membagi AB di dalam dengan perbandingan m : n
Bentuk (b) dan (c) dapat dinyatakan dalam kalimat : “P membagi AB di luar dengan perbandingan m : n

Untuk lebih jelasnya ikutilah contoh soal berikut ini :
01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP : PB = 2 : 1, gambarlah letak titik P
Jawab


02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP : PB = –2 : 1, gambarlah letak titik P
Jawab


03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 : 3, maka gambarkanlah letak titik P
Jawab



(2) Tinjauan Analitis Perbandingan Vektor

Vektor posisi adalah vektor yang berpangkal di O(0,0) dan dilambangkan dengan satu huruf kecil, sehingga

Sebagai contoh diketahui A(2, -3, 4) maka vektor posisi a adalah a = 2 i – 3 j + 4 k
Jika OA + AB = OB

Sebagai contoh jika diketahui A(2, -1, 6) dan B(-3, 2, 4) maka:

Menurut rumus perbandingan ruas garis

Sehingga untuk A(Ax, Ay, Az) dan B(Bx ,By, Bz) serta P(Px, Py, Pz) terletak segaris dengan AB dan memiliki perbandingan AP : PB = m : n, maka berlaku:


04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR : RQ = –2 : 5 maka nyatakanlah vektor r dalam p dan q
Jawab


05. Jika titik A, B dan P kolinier dengan perbandingan AP : PB = –4 : 3 maka nyatakanlah vektor a dalam p dan b
Jawab

Tidak ada komentar:

Posting Komentar